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Summary. The invariance of the configuration interaction (CI) energy with 
respect to orbital rotation is considered. The inclusion of all spin couplings versus 
only those from the first-order interacting space is considered. A definition for the 
analog of a second-order CI calculation when inactive electrons are present is 
proposed. 
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The energy of a configuration interaction (CI) wave function that includes all 
single and double excitations from a single closed shell reference is invariant to 
the rotation of equivalent orbitals. That is, the energy is unchanged by a 
rotation of the virtual orbitals or by a rotation of the occupied orbitals. For 
open-shell CI calculations, however, the invariance properties are less well 
known. The lack of invariance introduces additional terms that complicate the 
gradient evaluation (see for example Ref. [1]) and can cause problems even 
when only the energy is required. For example, we recently [2] encountered 
difficulties in determining the potential energy for the NH :22 state at long 
range. The orbitals were optimized using a complete active space self-consistent 
field (CASSCF) procedure with the N 2p and H l s  orbitals in the active space. 
Note this wave function contains a single configuration state function (CSF) 
and is therefore equivalent to an SCF treatment. Thus, the two active o- orbitals 
(the N 2pa and Hls )  have occupations of one and can mix arbitrarily when the 
CASSCF natural orbitals are obtained. In a subsequent single-reference singles 
and doubles CI calculation, the N 2s electrons were also correlated and the 
mixing of the active orbitals led to an irregular potential that was obviously 
incorrect; the energy at ro could vary by 28 cm-1 with the choice of orbitals for 
a potential with a well depth of 10 cm -1. To obtain CI energies that were 
invariant to this rotation, the CI was expanded by adding the N 2s orbital to 
the CI active space. While the solution was straightforward for this case, the 
question remains of how to generate a consistent definition of the CI expansion 
when orbital invariance is important. 
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First, consider the case of a six-electron triplet, where the CI expansion 
consists of all single and double excitations from the reference: 

a2b2c~do:. (1) 

If the CI expansion is obtained by including all spin couplings for each 
occupation that can be generated, then the energy is invariant to the mixing of 
the virtual orbitals and to the mixing of the inactive orbitals a and b. The energy 
is, however, not invariant to the rotation of active orbitals c and d. The lack of 
invariance of the energy with respect to the rotation of the active (open-shell) 
orbitals can be demonstrated by considering the excitation b2--~ ef. When 
orbitals e and f are triplet coupled, orbitals c and d must be singlet coupled. 
Thus, for the energy to be invariant to the mixing of orbitals c and d: 

aZcZeefe (2) 

and 

aZd2e~:fo~ (3) 

are required. However, these configurations are not included in the CI expansion 
because they differ from the reference (1) by three spatial orbitals. The configu- 
rations required to restore the invariance of the energy can be obtained by 
including two additional references: 

aZb2c2 (4) 

and 

a2b2d 2. (5) 

Note, however that the configurations in (4) and (5) do not have the same spin 
multiplicity as that in (1), and these configurations are not included in the CI 
expansion; only those configurations of the correct spin multiplicity that can be 
generated by single and double excitations from them are included. 

The lack of invariance of the energy can also be eliminated by restricting the 
spin couplings to those of the first-order interacting space [3] rather than 
including all spin couplings for a given number of open-shell orbitals. Consider- 
ing our example, the triplet coupling of orbitals e and f would be excluded for 
the b2--. ef excitation. While this configuration differs from the reference by two 
spatial orbitals, it differs by three spin-orbitals and therefore has a matrix 
element of zero with the reference. Thus this configuration and all others that 
lead to the lack of energy invariance are excluded when the interacting space is 
used. 

The lack of invariance of the energy with respect to orbital rotation may not 
cause any problems. For example, if an SCF approach is used to optimize the 
orbitals, the open-shell orbitals are commonly defined as eigenvectors of an 
appropriate Fock operator. Thus unless their orbital energies are essentially 
degenerate, the orbitals vary smoothly across a surface and so will the CI energy. 
If a CASSCF approach is used to optimize the orbitals, obvious problems at the 
CI level will only arise if similar natural orbital occupation numbers lead to an 
arbitrary mixing of the active orbitals, as was the case in our NH example. 

A CASSCF/multireference CI (MRCI) procedure that uses only selected 
reference configurations is generally not invariant to the rotation of the active 
orbitals. Even a CI calculation that includes all of the configurations in the 
CASSCF as references (CAS-ref CI) is not necessarily invariant as we saw in our 
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above example. This includes the case where there are no inactive orbitals when 
spatial symmetry is used to eliminate reference configurations. For example, 
consider a 3A 1 state with six electrons correlated and an active space that consists 
of two al, one bl, one b2 and one a2 orbital, giving the nine reference 
configurations in Table 1. For invariance of the energy to rotation of the lal and 
2al orbitals, configurations such as: 

la~lb~e~f~ (6) 

and 

2aZ lb~e~fc~ (7) 

are required in the CI expansion, because: 

l a l2a l  lb~e~f~ (8) 

is generated by a double excitation from the reference configurations. However, 
the configurations in (6) and (7) are not generated by a single or double 
excitation from one of the nine CASSCF reference configurations. Thus, it is 
necessary to impose the interacting space restriction or to include additional 
references. It should be noted that it may not be possible to implement the true 
first-order interacting space for arbitrary references in some direct CI programs 
because of restrictions on the spin couplings. 

A second-order CI (SOCI) expansion [4] consists of all configuration with n 
electrons in the active orbitals, n -  1 electrons in the active orbitals and one 
electron in the virtual orbitals, and n - 2 electrons in the active orbitals and two 
electrons in the virtual orbitals. This is equivalent to all single and double 
excitations of the desired spatial symmetry that can be generated from the 
CASSCF wave functions of all possible spatial symmetries (having the correct 
number of active orbitals and electrons). Thus, in the case of no spatial 
symmetry, the SOCI and the CAS-ref CI are equivalent. The SOCI has the 
feature that the energy is invariant to rotation of the active and to the rotation 
of the virtual orbitals. Thus in our example, configurations of the type shown in 
(6) and (7) would be generated. For prototype direct CI programs that trace 
their origin to the unitary group formulation, it is simple to extend them to 
include the extra references of the wrong spatial symmetry. 

In many cases, the number of active orbitals and electrons must be restricted 
to keep the CASSCF tractable. Thus the number of electrons correlated in the 

TaMe 1. The 5(9) reference occupations (CSFs) in the 3A 1 CAS-ref CI 
calculation with 6 electrons and two active al, one bi, one b2, and one a 2 
orbital 

Orbital occupation 

# CSF a la I 2a 1 lbl lb 2 la2 

1 1 1 1 2 2 0 
2 1 1 1 2 0 2 
3 1 1 1 0 2 2 
4 3 2 1 1 1 1 
5 3 1 2 1 1 1 

a The number of CSFs arising from a given occupation 
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subsequent CI calculation will be larger than the number of active electrons in 
the CASSCF calculation. In general, the CI energy will not be invariant to 
rotation of the active orbitals if the CI expansion consists of all single and 
double excitations from the CASSCF, even if excitations from the CASSCF 
wave functions of the wrong spatial symmetry are included as reference configu- 
rations. For a system with m inactive and n active electrons, invariance of the 
energy with respect to active orbital rotation is obtained if the CI expansion 
consists of the excitations defined in Table 2. This expansion consists of all single 
and double excitations from the CASSCF calculation of the desired spin 
multiplicity and spatial symmetry, as well as all single and double excitations 
from the CASSCF wave functions having the wrong spin multiplicity and spatial 
symmetry. These configurations can be generated with a minor modification to 
our direct CI program. The energy of this wave function is invariant with respect 
to rotation of the inactive, active, or virtual orbitals. Because this wave function 
has the desirable feature of having the energy invariant to mixing of the 
equivalent orbitals, we suggest this as the definition of a SOCI calculation when 
there are inactive electrons. We should also note that this definition is similar to 
that used in the restricted-active-space (RASSCF) wave function [5], where the 
RAS1, RAS2, and RAS3 spaces are equivalent to the inactive, active, and virtual 
orbitals, respectively. 

While the SOCI procedure has the desirable feature of the invariance of the 
energy with respect to orbital rotations, it can result in very long CI expansions; 
In some cases becoming prohibitively long. Even using the CAS-ref with the 
interacting space approach might result in a prohibitively long CI expansion. In 
a study of symmetry breaking, another application where the invariance of the 
energy with respect to orbital rotation is important, McLean et al. [6] divided the 
active space into subspaces, and then by defining the CI expansion using 
distributions analogous to those in Table 2 achieved a selected reference MRCI 
with well defined properties for the energy with respect to orbital rotation. 

In addition to the calculation of gradients, there are other cases where the 
invariance of the energy with respect to orbital rotation can be useful. Consider 
the case of several weakly bound states arising from the same asymptote, for 
example, the four states (3A, 3//, 3 S -  and 3~]~) of CoHe+ arising from the ground 
s t a t e  (3F-~ I S )  asymptote. If a state-averaged CASSCF procedure is used to 
optimize all states (weighted by their orbital degeneracy) derived from a given 
asymptote, the asymptotic energy of all states will be identical. However, if a 

Table 2. The distributions of electrons defin- 
ing an SOCI with inactive electrons 

inactive active virtual 

m n 0 
m n - 1  1 
m n - 2  2 
m - 1  n + l  0 
m - 1  n 1 
m - 2  n + 2  0 
m - 2  n + l  1 
m - 2  n 2 
m - - I  n - - 1  2 
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CAS-ref CI procedure is used the CI energies will not agree at infinite separation. 
While it is probably acceptable to shift all the potentials into agreement at 
infinite separation [7], a CASSCF/SOCI treatment yields CI energies that all 
agree at long range, hence eliminating one uncertainty from the calculation. 

Problems at the CI level can also arise when studying a molecule with higher 
symmetry than used in the calculation. Consider the 2E(e3) state of molecule with 
C3v symmetry, but where the calculation is performed in C~ symmetry. Even if 
the orbitals have the full symmetry, the 2A'(e~e 2) component of the 2E state will 
not necessarily have the same energy as the 2A"(e~e~) component. If the CI wave 
functions includes all single and double excitations away from both occupations, 
the energies will agree. However, in each CI calculation one of the references has 
the wrong spatial symmetry and therefore the first-order interacting space can 
not be used. This is essentially the same problem as for CoHe +, where to bring 
all asymptotic energies into agreement, a SOCI calculation is required to treat all 
components of the Co + 3F state equivalently. 
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